Site-Directed Mutations in the C-Terminal Extension of Human αB-Crystallin Affect Chaperone Function and Block Amyloid Fibril Formation
نویسندگان
چکیده
BACKGROUND Alzheimer's, Parkinson's and Creutzfeldt-Jakob disease are associated with inappropriate protein deposition and ordered amyloid fibril assembly. Molecular chaperones, including alphaB-crystallin, play a role in the prevention of protein deposition. METHODOLOGY/PRINCIPAL FINDINGS A series of site-directed mutants of the human molecular chaperone, alphaB-crystallin, were constructed which focused on the flexible C-terminal extension of the protein. We investigated the structural role of this region as well as its role in the chaperone function of alphaB-crystallin under different types of protein aggregation, i.e. disordered amorphous aggregation and ordered amyloid fibril assembly. It was found that mutation of lysine and glutamic acid residues in the C-terminal extension of alphaB-crystallin resulted in proteins that had improved chaperone activity against amyloid fibril forming target proteins compared to the wild-type protein. CONCLUSIONS/SIGNIFICANCE Together, our results highlight the important role of the C-terminal region of alphaB-crystallin in regulating its secondary, tertiary and quaternary structure and conferring thermostability to the protein. The capacity to genetically modify alphaB-crystallin for improved ability to block amyloid fibril formation provides a platform for the future use of such engineered molecules in treatment of diseases caused by amyloid fibril formation.
منابع مشابه
Binding of the molecular chaperone αB-crystallin to Aβ amyloid fibrils inhibits fibril elongation.
The molecular chaperone αB-crystallin is a small heat-shock protein that is upregulated in response to a multitude of stress stimuli, and is found colocalized with Aβ amyloid fibrils in the extracellular plaques that are characteristic of Alzheimer's disease. We investigated whether this archetypical small heat-shock protein has the ability to interact with Aβ fibrils in vitro. We find that αB-...
متن کاملFunctional Amyloid Protection in the Eye Lens: Retention of α-Crystallin Molecular Chaperone Activity after Modification into Amyloid Fibrils
Amyloid fibril formation occurs from a wide range of peptides and proteins and is typically associated with a loss of protein function and/or a gain of toxic function, as the native structure of the protein undergoes major alteration to form a cross β-sheet array. It is now well recognised that some amyloid fibrils have a biological function, which has led to increased interest in the potential...
متن کاملThe small heat-shock protein αB-crystallin uses different mechanisms of chaperone action to prevent the amorphous versus fibrillar aggregation of α-lactalbumin.
Stress conditions can destabilize proteins, promoting them to unfold and adopt intermediately folded states. Partially folded protein intermediates are unstable and prone to aggregation down off-folding pathways leading to the formation of either amorphous or amyloid fibril aggregates. The sHsp (small heat-shock protein) αB-crystallin acts as a molecular chaperone to prevent both amorphous and ...
متن کاملStructural and functional aspects of hetero-oligomers formed by the small heat shock proteins αB-crystallin and HSP27.
BACKGROUND αB-crystallin and HSP27 are mammalian intracellular small heat shock proteins. RESULTS These proteins exchange subunits in a rapid and temperature-dependent manner. CONCLUSION This facile subunit exchange suggests that differential expression could be used by the cell to regulate the response to stress. SIGNIFICANCE A robust technique defines parameters for the dynamic interact...
متن کاملStructural and functional roles of deamidation of N146 and/or truncation of NH2- or COOH-termini in human αB-crystallin
PURPOSE The purpose of the study was to determine the relative effects of deamidation and/or truncation on the structural and functional properties of αB-crystallin. METHODS Using wild-type (WT) αB-crystallin and the αB deamidated mutant (i.e., αB N146D), we generated NH(2)-terminal domain deleted (residues no. 1-66; αB-NT), deamidated plus NH(2)-terminal domain deleted (αB N146D-NT), COOH-te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 2 شماره
صفحات -
تاریخ انتشار 2007